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It has been maintained that the physical content of a model of a system is completely
contained in the C∗-algebra of quasi-local observables A that is associated with the
system. The reason given for this is that the unitarily inequivalent representations
of A are physically equivalent. But, this view is dubious for at least two reasons.
First, it is not clear why the physical content does not extend to the elements of the
von Neumann algebras that are generated by representations of A. It is shown here
that although the unitarily inequivalent representations of A are physically equivalent,
the extended representations are not. Second, this view detracts from special global
features of physical systems such as temperature and chemical potential by effectively
relegating them to the status of fixed parameters. It is desirable to characterize such
observables theoretically as elements of the algebra that is associated with a system
rather than as parameters, and thereby give a uniform treatment to all observables. This
can be accomplished by going to larger algebras. One such algebra is the universal
enveloping von Neumann algebra, which is generated by the universal representation of
A; another is the direct integral of factor representations that are associated with the set
of values of the global features. Placing interpretive significance on the von Neumann
algebras mentioned earlier sheds light on the significance of unitarily inequivalent
representations of A, and it serves to show the limitations of the notion of physical
equivalence.

KEY WORDS: C∗-algebra; inequivalent representations; von Neumann algebras;
algebraic field theory; physical equivalence; foundations of physics.

1. INTRODUCTION

During the mid-to-late 1920s there were two competing versions of non-
relativistic, spinless quantum mechanics: Schrödinger’s wave mechanics and
Heisenberg’s matrix mechanics. Through the work of Schrödinger, Dirac, and
most importantly von Neumann, it was realized that the two theories are unitarily
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equivalent. This equivalence may be expressed by saying that each of them is
a representation of the Heisenberg form of the canonical commutation relations
(CCRs):

[Pi,Qj ] = PiQj − QjPi = −ihδij

[Pi, Pj ] = [Qi,Qj ] = 0

The indices i, j correspond to degrees of freedom of a system. In what follows,
it will suffice to consider just 1 degree of freedom, since the generalization to
n-degrees of freedom (n ∈ N) is straightforward. In Schrödinger’s representation,
P corresponds to the differential operator −ih d/dx and Q to multiplication by
the variable x, both acting on elements of L2(R) (the space of Lebesgue square
integrable functions on the set of real numbers). In Heisenberg’s representation,
Born and Jordan found formal matrices with infinitely many entries to represent
the operators P and Q that acted on the complete vector space over C of square-
summable complex sequences.

There are problems with the operators associated with P and Q above. They
arise because these operators are unbounded. As a result, they are only defined
on a merely dense subset of the Hilbert space, meaning that they are essentially
ambiguous until a domain is specified. The initial and boundary conditions de-
termine the domain, but it is often a difficult matter to specify the domain given
those conditions. Moreover, each time such operators are combined algebraically,
one must further restrict them to a common dense domain. Finally, it might be
thought that there could be realizations of the CCRs as bounded operators on
Hilbert space, but it can be shown that this is impossible. These problems are
generic to all representations of Heisenberg’s form of the CCRs.

To circumvent the problems associated with unbounded operators, it is stan-
dard practice to work with the associated unitary operators, which are obtained
by way of exponentiation. All unitary operators are bounded by unity. Working
with bounded operators greatly simplifies matters—they are defined on the entire
Hilbert space. The “Weyl unitaries” (after Hermann Weyl who first introduced
them) that are associated with P and Q are by definition the following:

U (a) = e
−iaP

h and V (a) = e
−iaQ

h ,

for any a ∈ R. The Weyl form of the CCRs (for 1 degree of freedom) is then this:

U (a)V (b) = e
−iab

h V (b)U (a)

for any a, b ∈ R. The Weyl unitaries act on elements of L2(R) as follows:

(U (a)�(x)) = �(x − a) and (V (b)�(x)) = e
−ibx

h �(x).
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The Heisenberg form of the CCRs may be obtained by applying ∂2/∂a∂b

to the Weyl form and then setting a = b = 0.4 Finally, von Neumann proved an
important theorem in 1931 that is now referred to as the Stone–von Neumann
Theorem (since Stone indicated the elements of this proof in 1930). Since then,
the theorem has been formulated in several different ways. The following is a
contemporary formulation abstracted from Summers (2001) of the Stone–von
Neumann Theorem.

Stone–von Neumann Theorem. Let {Ũ (a)|a ∈ R}, {Ṽ (b)|b ∈ R} be finite
sets of weakly continuous unitary operators acting irreducibly on a separable
Hilbert space H such that Ũ (a)Ṽ (b) = e

−iab
h Ṽ (b)Ũ (a), Ũ (a)Ũ (b) = Ũ (a + b)

and Ṽ (a)Ṽ (b) = Ṽ (a + b), then there is a Hilbert space isomorphism W : H →
L2(R) such that WŨ (a)W−1 = U (a) and WṼ (a)W−1 = V (a).5

This theorem is true for any finite system.6 The Stone–von Neumann Theorem
fails for infinite quantum systems, which typically have a continuum of unitarily
inequivalent representations for the Weyl form of the CCRs. There are, in addition,
systems having an infinite number of degrees of freedom for which the associated
algebra is other than the Weyl algebra, and those algebras also have a continuum
of unitarily inequivalent representations.

There are two important consequences of the Stone–von Neumann Theorem.
First, the physical content of any irreducible representation of {Ũ , Ṽ ,H} is the
same. In particular, wave mechanics and matrix mechanics have the same physi-
cal content and produce the same predictions for physical models. The simplest
way to see their empirical equivalence is through their unitary equivalence. In
quantum mechanics, states and observables correspond to special types of linear

4 The two forms are not equivalent. For an interesting case where the Heisenberg form cannot be
integrated to the Weyl form, see Reeh (1988).

5 These sets of operators are said to act irreducibly on H if and only if the only closed subspaces of H
that are invariant under the action of their elements are H and 0. Weak continuity of U(t) with respect
to the parameter t means that 〈φ|U (t)|ψ〉 is a continuous function of t for each φ, ψ ∈ H.

6 A finite system is one that has only a finite number of degrees of freedom—i.e., the respective
domains of the indices i and j are finite. This is certainly not to say that a separable Hilbert
space must have a finite number of dimensions. The number of degrees of freedom of a sys-
tem and the number of dimensions of its associated Hilbert space are distinct notions; a system
with a single degree of freedom may correspond to an N-dimensional (for any positive integer
N ≥ 2) or a countably-infinite-dimensional Hilbert space. Electron spin corresponds to a single
degree of freedom, and it is associated with a two-dimensional Hilbert space; whereas, the en-
ergy of a particle in an infinite square-well potential, which also corresponds to a single degree
of freedom, is associated with a countably infinite-dimensional Hilbert space. A separable Hilbert
space cannot have a continuum of mutually orthogonal state vectors. Dirac delta functions and
plane wave functions are not elements of a separable Hilbert space. They are elements of a rigged
Hilbert space, which is not a Hilbert space. Finally, an infinite system is a system having an infinite
number of degrees of freedom. It is to be contrasted below with the notion of an infinite-particle
system.
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operators; states correspond to density operators and observables to self-adjoint
operators. The expectation value for an observable A for a system that is in the
state ρ is Tr(ρA). The transformation of an operator O1 from one representation
to a corresponding operator O2 in the other is effected by a unitary transformation
U as O2 = UO1U

−1. Let ρ1 be a state and A1 be an observable in one representa-
tion, and let ρ2 and A2 be their counterparts in the other obtained via this unitary
transformation. This unitary transformation preserves expectation values—i.e.,
Tr(ρ2A2) = Tr(Uρ1U

−1UA1U
−1) = Tr(ρ1A1)—since the trace operation is in-

variant under cyclic permutations. The empirical equivalence follows since the
equality given earlier holds for all possible states and observables; the associated
set of expectation values exhausts the physical content of the theory. What this
means in practice is that one may freely choose to work with the most convenient
representation. If a particular problem is more easily solved in matrix mechanics
than wave mechanics, the unitary equivalence of the two representations guar-
antees that the empirical predictions would be exactly the same, if they were
instead solved in wave mechanics. The situation is analogous to choosing the
most convenient coordinate system.

The mathematical structure that von Neumann associated with non-
relativistic, spinless quantum mechanics is a separable Hilbert space (1932).7

It can only accommodate finite-particle systems; a finite-particle system is a sys-
tem that only has a finite number of subsystems. That is to say, the domain of
non-relativistic, spinless quantum mechanics is the set of finite-particle systems.
This domain includes atoms, molecules, subatomic particles, and (more gener-
ally) any composite system consisting of a finite number of these systems. The
same holds for spin-j systems (j = 0, 1/2, 1, 3/2, . . .) and relativistic quantum
mechanics. A simple example of an infinite-particle system whose set of possible
vector states cannot be represented in a separable Hilbert space is an infinite lattice
of spin systems. Such a system has a continuum of mutually orthonormal vector
states,8 and this means that the associated Hilbert space is nonseparable.

7 A topological space is separable if and only if it has a countable basis. This is a consequence of
separability, not a definition. By definition, a space is separable if and only if it has a countable dense
subset.

8 To see why, consider the set of real numbers in the interval [0,1] (an uncountable set). Suppose that
the elements of this interval are expressed in binary notation. Consider an infinite lattice of spin
systems that has a first element but no last element, and suppose that each element of the lattice is
either in spin-up or spin-down with respect to the z-direction. Each distinct real number in the given
interval may be associated with a distinct state of the lattice as follows. Take the sequence of 0s and
1s corresponding to a given real number in the interval, and associate the nth element of the sequence
with the spin state of the nth element of the lattice by letting 1 corresponding to spin-up and 0 to
spin-down (in the z-direction). It then follows that two distinct real numbers in the interval [0,1]
corresponds to two mutually orthogonal lattice states—their inner product is zero due to the lattice
points where they differ.
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This notion of an infinite-particle system is distinct from that of a system
with infinite degrees of freedom. Fock representations accommodate systems
having infinite degrees of freedom; but they do not accommodate systems having
an infinite number of particles (or subsystems). Other representations have been
developed for treating infinite-particle systems, such as the spin lattice mentioned
earlier. Instead of beginning with an associated Hilbert space, one begins with a
C∗-algebra of observables that captures essential structural features of the system.
A C∗-algebra is an abstract mathematical space that need not have an inner
product, and is not a Hilbert space in general. But, it may be represented on a
Hilbert space H by mapping it into the set of bounded operators of H, if the
mapping preserves the algebraic relations among the elements of the algebra. The
associated set of operators on a Hilbert space, the range of the representation, is a
concrete C∗-algebra. C∗-algebras and their representations are characterized more
fully later.

If the system is a finite-particle system, then all representations are unitarily
equivalent—i.e., for any pair there is a unitary operator that transforms one into
the other. If the system is an infinite-particle system, its associated algebra has
a continuum of unitarily inequivalent representations. To say that a continuum
of representations is unitarily inequivalent means that for any pair of distinct
representations in the continuum there is no unitary operator that transforms
one into the other. Thus, algebraic quantum theory is a proper generalization of
traditional quantum mechanics. It is applicable to both finite-particle and infinite-
particle systems. The added generality of the algebraic framework makes possible
the construction of new, viable models for a rather diverse range of physical
phenomena.

There are two distinct domains of algebraic quantum theory beyond quan-
tum mechanics. One is algebraic quantum statistical mechanics,9 and the other
is algebraic quantum field theory.10 Infinite-particle systems are used in alge-
braic quantum statistical mechanics to capture rigorously key elements of ther-
modynamic systems. The notions of an equilibrium state, temperature, and phase
transitions—such as the transition from a liquid to a gas—are three cases in point.
The problem of characterizing these elements in the standard framework of quan-
tum mechanics has proven to be intractable. The modeling of infinite-particle
systems in this context crucially involves the thermodynamic limit where the vol-
ume and particle number of a gas, liquid, or solid approach infinity while the

9 Two good introductory texts on algebraic quantum statistical mechanics are by Thirring (1980) and
Sewell (1986). The definitive advanced source is the two-volume set (Brattelli and Robinson, 1979,
1981). A terrific intermediate-level source is Emch (1972).

10 Haag (1996) and Araki (1999) provide good introductory sources on algebraic quantum field theory.
Two good intermediate-level sources are the text by Horuzhy (1990) and the review article by Roberts
(1990). Also, worth consulting are the more advanced treatises by Baumgärtel and Wollenberg
(1995), and Baumgärtel (1995).
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density remains constant. In quantum field theory, the infinite-particle system is a
field; the “particles” are field effects that appear in special circumstances. In alge-
braic quantum field theory, a field is also a derived notion. In one type of algebraic
approach, the local algebraic approach, the most fundamental entities are local
observables, where the term ‘local’ means ‘associated with a bounded spacetime
region.’

2. THE ALGEBRAIC FRAMEWORK

The algebras under consideration are the (abstract) C∗-algebras and W ∗-
algebras, and their respective (concrete) representations as a subset of the set of
bounded operators of an associated separable or nonseparable Hilbert space. These
operator algebras are especially well-behaved infinite-dimensional generalizations
of the algebras of n × n matrices, n ∈ N.

A C∗-algebra A is a vector space over the field of complex numbers C with
the following algebraic features, (a) and (b), and topological features, (c) and (d):

(a) A multiplication mapping from A into A that satisfies these three condi-
tions for all A,B,C ∈ A and λ ∈ C : A(B + C) = AB + AC,A(BC) =
(AB)C, A(λB) = λ(AB).

(b) A conjugation mapping ∗ from A into A that satisfies these three condi-
tions for all A,B ∈ A and λ,µ ∈ C : (A∗)∗ = A, (AB)∗ = B∗A∗, (λA +
µB)∗ = λ̄A∗ + µ̄B∗.

(c) A norm ‖.‖ that satisfies ‖AB‖ ≤ ‖A‖‖B‖ and ‖A∗A‖ = ‖A‖2 for all
A,B ∈ A.

(d) Completeness with respect to the norm topology, the topology given by
the metric induced by the norm.

Suppose now that A is a C∗-algebra. The complete set of bounded linear
functionals on A is by definition its dual, A∗.11 It can be shown that A∗ is a
Banach space.12 A state is a positive linear functional of unit norm. The complete
set of states in A∗ is denoted as A∗+. It is often described as a convex subset of
the unit ball of A∗, which means that A∗+ is closed under convex sums; ω is as
a convex sum of ω1, ω2 ∈ A∗+, if ω = λω1 + (1 − λ)ω2 for some 0 ≤ λ ≤ 1. The
extremal elements of A∗+ are those that can only be trivially expressed as a convex
sum, meaning that the sum exists only if λ = 0 or λ = 1; they are referred to as
the pure states on A.

11 An index of notation is included towards the end this paper for the reader’s convenience.
12 A Banach space is a normed vector space that is complete with respect to the metric induced by the

norm.
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By definition, a W ∗-algebra is a C∗-algebra that is the dual of a Banach
space.13 So, if R is a W ∗-algebra, there is a (unique) Banach space R∗ such that
R = (R∗)∗ is referred to as the predual of R. It consists of the complete set of
normal states on R. A linear functional ρ on a W ∗-algebra R is said to be normal
if and only if ρ(supαTα) = supαρ(Tα) for every uniformly bounded increasing
directed set {Tα} of positive elements of R (Sakai, 1971, Definition 1.13.1). In the
concrete setting, a normal state is a positive trace-class-1 Hilbert-space operator.14

Suppose now that A is a C∗-algebra. Since A∗ is a Banach space, as noted
earlier, the bidual of A (i.e., the dual of A∗) is well defined; it is denoted as A∗∗,
where A∗∗ = (A∗)∗. Thus, A∗∗ is a W ∗-algebra by the earlier definition. A∗∗ plays
a key role later, since it is isometrically isomorphic with the universal enveloping
von Neumann algebra of A, which is the von Neumann algebra generated by
the universal representation of A. The universal representation of A involves the
entire set of representations of A, which indicates that A∗∗ is a very large space.15

As already mentioned, a representation of a C∗-algebra A is a map π from
A into the set of bounded operators B(Hπ ) of an associated Hilbert space Hπ that
preserves the algebraic relations between the elements ofA. The resulting concrete
C∗-algebra, the image of A in Hπ , is denoted as π (A). To say that π preserves the
algebraic relations between the elements of A means that the following conditions
are satisfied for any A,B ∈ A and α, β ∈ C:

• π (αA + βB) = απ (A) + βπ (B),
• π (AB) = π (A)π (B), and
• π (A∗) = π (A)∗.

π (A) denotes the operator in Hπ that corresponds to A ∈ A. A representation π is
faithful if and only if ker π = {0}, meaning that the kernel of π is the zero element
of A. By definition, ker π ≡ {A ∈ A|π (A) = 0}. So, a faithful representation is
one that only maps the zero observable in A to the zero operator in Hπ , and this
may be expressed by saying that the kernel of the representation (the set of zero
elements) is trivial. It is standard practice in algebraic quantum theory to restrict
attention to faithful representations; i.e., π is required to be injective.

The standard procedure for generating representations of a C∗-algebra A is
the GNS construction (so called since Gelfand, Naimark, and Segal first formulated
it). They proved that for every ρ ∈ A∗+, one may construct a representation πρ

of A on a Hilbert space Hπρ
in such a way that there is a vector φρ ∈ Hπρ

that

13 One example of a C∗-algebra that is not a W ∗-algebra is the algebra of continuous complex-valued
functions on a compact set. It can be shown that this algebra is not the dual of a Banach space.

14 If T ∈ B(H) and T is positive (i.e., 〈ψ |T ψ〉 ≥ 0 for all ψ ∈ H) then it is of trace class, provided
that Tr(T ) < +∞; it is trace-class-1, if (in addition) Tr(T ) = 1. Normal states are discussed in more
detail later when von Neumann algebras are introduced.

15 Some proponents of the algebraic approach regard it as too large. This issue is not addressed below.
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satisfies these two conditions for all A ∈ A:

ρ(A) = 〈φρ |πρ(A)φρ〉 and Hπρ
= {πρ(A)φρ |A ∈ A}.

Each triple 〈Hπρ
, πρ, φρ〉 is unique up to unitary equivalence.16

A representation π is said to be irreducible if and only if the only closed
subspaces of Hπ that are invariant under the action of the elements of π (A) are
Hπ and 0. It can be shown that the representation associated with an element
ρ ∈ A∗+ is irreducible if and only if ρ is a pure state. An operator on Hπ is a
density operator, if it is a trace-class-1 operator. An element of ρ ∈ A∗+ is said
to be π -normal, if it can be represented as a density operator ωρ in Hπ ; that is, if
π maps ρ to a density operator ωρ ∈ Hπ , then ρ is a π -normal state of A∗+. The
set of all π -normal states form a norm closed convex subset of A∗+ that is called
the folium Fπ associated with the representation π .

One very useful algebraic structure for algebraic quantum theory is the notion
of a von Neumann algebra. By definition, a von Neumann algebra is a weakly
closed self-adjoint subalgebra of B(H) on some Hilbert space H. To say that a
subsetR ofB(H) is weakly closed (i.e., thatR is closed in the weak operator topol-
ogy) means that any sequence {Tn} of elements of R converges to another element
T ∈ R in the sense that 〈φ|Tn|ψ〉 → 〈φ|T |ψ〉 for all φ,ψ ∈ H. A von Neumann
algebra may also be defined algebraically using the notion of a bicommutant. Sup-
pose R ⊆ B(H). R’s commutant is R′ = {y ∈ B(H ) : ∀x ∈ R, xy = yx}, and
R’s bicommutant is R′′ = (R′)′. By definition, R ⊆ B(H) is a von Neumann al-
gebra if and only if R = R′′. It can be shown that these two definitions of a von
Neumann algebra are equivalent.

A von Neumann algebra may be generated by a representation π of a C∗-
algebra A in two ways, one topological and the other algebraic. The topological
way is to close π (A) in the weak operator topology, and the resulting von Neumann
algebra is denoted as π (A)−. The algebraic way is to take the bicommutant of
π (A), and the resulting von Neumann algebra is denoted as π (A)′′. π (A)′′ is a von
Neumann algebra, since it can be shown that π (A)′′′′ = π (A)′′. It turns out that
these two methods of generating von Neumann algebras are equivalent, meaning
that π (A)′′ and π (A)− are identical. π (A)′′ is used later to denote the von Neumann
algebra generated by the representation π of A. Finally, it is worth noting that a
W ∗-algebra is an abstract von Neumann algebra—see Theorem 1.16.7 of Sakai
(1970, pp. 41–42).

3. PHYSICAL EQUIVALENCE AND FELL’S THEOREM

As noted earlier, the Stone–von Neumann Theorem fails for infinite non-
relativistic, spinless quantum systems. Such systems typically have a continuum

16 For details, see Bratteli and Robinson (1979, 1981, Section 2.3.3).
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of unitarily inequivalent representations for the Weyl form of the CCRs or, more
generally, for systems that are characterized by some other algebra of bounded ob-
servables. Proponents of algebraic quantum field theory regarded the inequivalent
representations as an overabundance. Unitary equivalence implies exact empirical
equivalence. If representations are unitarily inequivalent, one is left to wonder
whether they are at least empirically equivalent in some sense. If a reasonable
notion of empirical equivalence cannot be found, then it will be necessary to intro-
duce criteria for representation selection. To resolve this selection problem, Haag
and Kastler (1964) introduced the notion of physical equivalence, which is related
to Fell’s (1960) notion of weak equivalence, and a theorem proved by Fell, which
they reformulate in terms of physical equivalence.

Let π1 and π2 be two representations of a C∗-algebra A. A topology may be
defined on A∗ called the weak∗-topology in which the weak∗-neighborhoods of
a state φ are indexed by a finite subset of A and positive real ε. Let B ≡ {Ai}ki=1
with B ⊂ A and k ∈ N, and let N (φ,B, ε) denote a generic weak∗-neighborhood
of φ. A state ψ is said to be in N (φ,B, ε) if and only if |φ(Ai) − ψ(Ai)| < ε for
1 ≤ i ≤ k. Using the weak∗-topology and related notions characterized earlier,
Haag and Kastler introduce the following definition. Two representations π1, π2

of a C∗-algebra A are physically equivalent if and only if for every π1-normal
state φ (i.e., φ ∈ Fπ1 ) and every weak∗-neighborhood N (φ,B, ε) of φ there is a
π2-normal state ψ such that ψ is in N (φ,B, ε), and vice versa (1964, p. 851).
They justify the use of the term “physical” by interpreting ε as the maximum
experimental error associated with members of B, and by noting that all actual
experiments only involve a finite number of observables that are each measured
with a finite precision. Here is a more explicit characterization of the notion of
physical equivalence.

Physical Equivalence. Two representations π1, π2 of a C∗-algebra A are
physically equivalent iff (if and only if) for every φ ∈ Fπ1 , finite set {Ai}ki=1 ⊂ A,
and real ε > 0, there is a ψ ∈ Fπ2 such that |φ(Ai) − ψ(Ai)| < ε for 1 ≤ i ≤ k.17

Haag and Kastler go on to say that what gives this definition of physical
equivalence its incisive, penetrating quality is (their version of) Fell’s Theorem.

Fell’s Theorem. All faithful representations of a C∗-algebra of observables
are physically equivalent (Fell, 1960).18

17 Emch gives a fuller characterization of physical equivalence than Haag and Kastler in Theorem 7
and the associated lemma (Emch, 1972, pp. 106–107). In the paragraph following Theorem 7, Emch
implies (in his final remark) that the characterization of physical equivalence of Haag and Kastler
corresponds to a rephrasing of one pair of conditions of the theorem—he means conditions (iii) and
(iv) of the associated lemma.

18 Fell’s notion of weak equivalence is purely mathematical, whereas Haag and Kastler’s notion of
physical equivalence is a physical interpretation of weak equivalence. As noted earlier, the epsilons
are interpreted as experimental errors and the restriction to a finite subset of A is interpreted as a
limitation on the number of measurements that can actually be carried out in a given experiment.



1248 Kronz and Lupher

As noted earlier, algebraic quantum theorists are only interested in faithful
representations. This means that Fell’s Theorem effectively resolves the selection
problem. No actual experiment can serve to distinguish between unitarily inequiv-
alent representations that are faithful.19 So, one can simply choose any convenient
faithful representation without worrying about there being any detectable physical
differences in predictions with respect to any other representation.

4. LOCAL ALGEBRAIC QUANTUM FIELD THEORY

In local algebraic quantum field theory, each open region O ∈ M (M is
Minkowski spacetime) is associated with a set A(O) of elements of a C∗-algebra,
the local observables in O. The regions O ∈ M are often taken to be double-
cones, nonempty intersections of the interiors of a forward and a backward light
cone.20 Aloc ≡ ⋃

O∈M A(O) is the set of quasi-local algebra over M, where
the overhead bar denotes the closure of the associated set in the norm topology.
Aloc is assumed to satisfy a set fundamental physical conditions, known as “ax-
ioms of local structure.” Three key axioms of local structure are isotony, locality,
covariance:

Isotony : IfO1 ⊂ O2 then A(O1) ⊂ A(O2),
Locality : IfO1 × O2 then [A(O1),A(O2)] = 0,

Covariance : Ifg ∈ P↑
+ and A ∈ A(O), αg[A(O)] = A(g[O])and U (g)AU (g)−1 = αg[A].

The meaning of isotony is evident. Locality says that if two spacetime regions
are space-like separated, then any element from the algebra associated with one
region must commute with any element from the algebra associated with the
other. Covariance says that each element g of the restricted Poincare group P↑

+
(one of four disjoint classes of the Poincare group) may be represented as an
automorphism αg of the algebra A(O). These are the primary conditions, though
additional conditions are often specified. It is not necessary to state these or to
elaborate further on the ones already specified, since they are not the focus of the
discussion that follows.

According to Haag and Kastler, Aloc captures all of the physically relevant
features of the associated quantum field. But there are larger algebras that contain
Aloc that have physically significant elements that are not in Aloc. Two such

19 There is an important consequence of Fell’s Theorem that is noted in Haag and Kastler (1964,
p. 852). It involves simple C∗-algebras, which are frequently the type of quasi-local algebra used in
algebraic quantum field theory. All representations of a simple C∗-algebra are faithful. So, it follows
from Fell’s Theorem that all representations of a simple C∗-algebra are physically equivalent.

20 Some quantum field models are formulated in bounded spatial regions, as in algebraic quantum
statistical mechanics, as opposed to bounded spacetime regions. Free-field models satisfying the
Klein–Gordon equation can be formulated in this manner (these are the so-called “fixed-time” or
“equal-time” formulations of the free-field model), but this is not the case for arbitrary Wightman
fields and generalized free-fields (Horuzhy, 1990, pp. 241 ff.).
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algebras are considered later: von Neumann algebras generated by representations
of Aloc and the universal enveloping von Neumann algebra generated by the
universal representation of Aloc. The generated elements of these algebras (i.e.,
the elements of these algebras that are not in Aloc) are referred to as “global
observables.” One important subset of the set of global observables is the set of
classical observables. Such observables commute with each other as well as with
all other observables of the system. This commutation condition is a necessary
condition for being a classical observable, but it is not clear whether it is sufficient
for being such. Some writers define the classical observables more narrowly as
the set of observables at infinity, which are physical quantities that are outside of
any bounded spacetime region. We adopt this more restrictive definition for the
purposes of this paper.21

The upshot is that Haag and Kastler regard global observables as physically
insignificant. They do so for seemingly operational reasons; i.e., on the grounds that
it is not possible to measure such quantities—this would especially seem to be the
case for observables at infinity, as the name suggests. But, developments in quasi-
local algebraic quantum statistical mechanics (and also in quantum mechanics in
phase space) seem to cast doubt on their position.

5. QUASI-LOCAL ALGEBRAIC QUANTUM
STATISTICAL MECHANICS

In quasi-local algebraic quantum statistical mechanics, the quasi-local C∗-
algebra of observables is defined as follows. For each finite open sphere s ∈ E (E is
Euclidean space) and time t ∈ R there is an associated C∗-algebra of observables
A(s, t) whose elements are local observables in s at t . The quasi-local algebra at
t is Aloc(t) ≡ ⋃

s∈E A(s, t). The quasi-local algebra is Aloc ≡ ⋃
t∈R

A(t). Aloc is
assumed to satisfy certain fundamental physical conditions that are counterparts to
the ones given earlier for algebraic quantum field theory.22 The “loc” subscript is
suppressed in the remainder of this section and in the next—the context indicates
well enough when it is intended.

21 The more restrictive definition is suggested by Hepp (1972, p. 241), and by Primas (1983, pp. 187–
189). Their reasons for adopting this more restrictive identification are unclear. One argument that
could be given for it is that classical observables are often treated as parameters (i.e., real scalars). If
so, then they would belong to the observables at infinity, since they belong to every algebra defined
on each finite region and on regions that are causally disjoint from these regions. In any case, the
issue deserves further analysis in a future paper.

22 Isotony is exactly analogous to that in algebraic quantum field theory, and it involves spatial regions
instead of spacetime regions. Locality corresponds to commutativity of operators that are associated
with disjoint spatial regions rather than space-like separated regions of spacetime. Covariance is
often associated with a continuous one parameter group of ∗-automorphisms of the C∗-algebra of
observables rather than the Poincare group.
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The results in quasi-local algebraic quantum statistical mechanics mentioned
earlier have to do with equilibrium states, which are known as KMS states—the
name is a tribute to the mathematical physicists who discovered them (Kubo,
Martin, Schwinger). For a given thermodynamic system, meaning an infinite
quantum system with an associated quasi-local algebra A, there is a KMS state
associated with each value β, the inverse temperature of the system. It will suffice
to focus on systems having a finite inverse temperature 0 < β < +∞.23 A KMS
state φ that corresponds to a pure phase of an infinite system at a finite temperature
β induces a representation πφ of A via the GNS construction. The associated von
Neumann algebra πφ(A)′′ is a factor.24 A factor is a von Neumann algebra with a
trivial center. The center of a von Neumann algebra is by definition the intersection
of the algebra with its commutant. It is said to be trivial if its elements consist of
scalar multiples of the identity element.

Takesaki (1970) showed that two factor representations πφ and π� are disjoint
provided that one of them is a type III factor and they correspond respectively
to inverse temperature values β, γ such that β �= γ .25 A representation π of a
C∗-algebra A is a factor representation if and only if the associated von Neumann
algebra π (A)′′ is a factor. Two representations of a C∗-algebra are disjoint if
no subrepresentation of one is equivalent to a subrepresentation of the other. A
subrepresentation of a representation π of a C∗-algebra A on Hilbert space H is
a representation that is obtained by restricting π to a non-zero subspace of H that
is invariant under π (A).

6. PHYSICAL EQUIVALENCE REVISITED

To connect the considerations from quasi-local algebraic quantum statistical
mechanics given earlier with those concerning unitarily inequivalent represen-
tations and physical equivalence, two simple theorems are derived. They are
consequences of theorems that have been proven elsewhere—see references that
follow. The proofs of those theorems are not repeated here. The first theorems is
stated as follows:

Theorem 1. Two factor representations πφ and πψ are disjoint if and only if
they are not quasi-equivalent.

23 It is theoretically possible to allow for β to have the values 0,+∞, and even negative values. These
possibilities are not relevant for what follows.

24 It turns out that the algebra is a type III factor. Murray and von Neumann categorized factors into
three mutually exclusive and exhaustive types—see Chapter 1 of Sunder (1987) for a brief review
of their classificatory scheme.

25 In 1980, Müller-Herold proved a similar result for chemical potential based on Takesaki’s result.
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Two representations πφ, πψ of a C∗-algebra A are quasi-equivalent if
and only if there is an isomorphism α : πφ(A)′′ → πψ (A)′′ such that πψ (A) =
α(πφ(A)) for each A ∈ A. In this context, an isomorphism is a bijection which
preserves the algebraic operations, which includes the ∗ operation.

Theorem 1 is a consequence of Corollary 10.3.4 and Proposition 10.3.12
in Kadison and Ringrose (1986, pp. 737–742). By Proposition 10.3.12(ii), two
factor representations are disjoint, if they are not quasi-equivalent. It remains to
show that they are disjoint only if they are not quasi-equivalent. Suppose that πφ

and πψ are disjoint factor representations. Let πφ̂ and πψ̂ be a subrepresentation
of each, respectively. By Corollary 10.3.4(i), two representations are disjoint iff
they have no quasi-equivalent subrepresentations. So, πφ̂ and πψ̂ are not quasi-
equivalent. By Proposition 10.3.12(i), a representation is a factor representation iff
it is quasi-equivalent to each of its subrepresentations. So, πφ is quasi-equivalent
to πφ̂ , and πψ is quasi-equivalent to π�̂ . Assume for reductio that π� and π�

are quasi-equivalent. It then follows that there are three ∗-automorphisms α, β, γ

(corresponding respectively to the three quasi-equivalencies) such that πφ(A) =
α(πφ̂(A)), πψ (A) = β(πψ̂ (A)), and πψ (A) = γ (πφ(A)) for each A ∈ A. So, there
must be a ∗-automorphism δ such that πφ̂(A) = δ(πψ̂ (A)) for each A ∈ A, where
δ = α−1γ −1β. But this means that πφ̂ and πψ̂ are quasi-equivalent, and this
contradicts a previous claim.26

The other theorem that is needed to connect the considerations from quasi-
local algebraic quantum statistical mechanics given earlier with those concerning
inequivalent representations is an immediate consequence of Theorem 12 in Emch
(1972, p. 124), and the theorem is stated as follows.

Theorem 2. Two representations πφ and πψ of a C∗-algebra A are quasi-
equivalent if and only if π̃φ and π̃ψ are physically equivalent.

The representations πφ and πψ can be uniquely extended to the universal
enveloping von Neumann algebra πu(A)′′. Their extensions are denoted as π̃φ and
π̃ψ , respectively. πu(A) is the universal representation of the algebra A, which is
defined as the direct sum of all representations formed from the states in A∗+

· π̃φ

and π̃ψ are equivalent to πφ(A)′′ and πψ (A)′′, respectively (Emch, 1972, p. 122).
The universal representation of A and the universal enveloping von Neumann
algebra are explained in more detail in the next section.

The upshot for the issues under consideration is the following consequence
of Theorems 1 and 2, namely the following theorem.

26 Thanks go to Rob Clifton for providing us with this version of the proof. One of the authors of this
paper (T.L.) had a different but equally effective proof of this theorem involving additional concepts.
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Theorem 3. If πφ and πψ are disjoint factor representations of a C∗-algebra A,
then their von Neumann extensions π̃φ and π̃ψ are not physically equivalent.

Two disjoint factor representations of A are not quasi-equivalent by Theorem
1, and by Theorem 2 this means that their von Neumann extensions are not
physically equivalent. More concretely, if φ and � are KMS states associated with
inverse temperature values β, γ with 0 < β < +∞, 0 < γ < +∞, and β �= γ ,
then π̃φ and π̃ψ are not physically equivalent.27

It is necessary to explain what it means to say that π̃φ and π̃ψ are not physically
equivalent. The matter is subtler than it first appears. It means the following:

π̃φ and π̃ψ are physically inequivalent if there is a φ′ ∈ Fπφ
, a finite set {Ai}ki=1 ⊂

πu(A)′′, and an associated set of positive reals {εi}ki=1, such that for all ψ
′ ∈

Fπψ
, |φ′

(Ai ) − ψ
′
(A)i | ≥ εi for some i(1 ≤ i ≤ k).

Note that the notion of physical equivalence mentioned earlier involves fi-
nite subsets of πu(A)′′ and not merely finite subsets of A. This is an important
distinction, since π̃φ and π̃ψ are physically equivalent with respect to any finite
subset {Ai}ki=1 ⊂ A : π̃φ and π̃ψ are extensions of πφ and πψ , and the latter are
physically equivalent by Fell’s Theorem.

From Theorem 7 and the associated lemma in Emch (1972, pp. 106–107), it
follows that π̃φ and π̃ψ are physically inequivalent if and only if ker π̃φ �= ker π̃ψ .
Given the earlier discussion, it follows that if πφ and πψ are disjoint factor rep-
resentations, then ker π̃φ �= ker π̃ψ . If ker π̃φ �= ker π̃ψ , then there are two
possible cases: one representation is faithful and the other is not, or both rep-
resentations are not faithful. In either case, there is an A ∈ πu(A)′′ such that
A �= 0 and either π̃φ(A) = 0 or π̃ψ (A) = 0. We may suppose without loss of
generality that π̃φ(A) �= 0 and π̃ψ (A) = 0. It follows that for any density ma-
trix ρπ̃φ

in the folium of π̃φ and any density matrix ρπ̃ψ
in the folium of π̃ψ

that ρπ̃φ
(A) �= ρπ̃ψ

(A) = 0. That is to say, no density matrix ρπ̃φ
in the folium

of π̃φ can approximate any density matrix ρπ̃ψ
in the folium of π̃ψ for the

observable A ∈ πu(A)′′. Thus, there will always be some global observable
A ∈ πu(A)′′ that will physically distinguish between any pair of disjoint factor
representations.

The earlier considerations serve to cast doubt on the claim that only faith-
ful representations are physically significant and on the claim that all of the
physical content of a theory is contained in the algebra of local or quasi-local
observables. Haag and Kastler regard local observables as the only physically
significant ones for the purposes of their local quantum physics project. Classical
observables, a subset of the set of observables at infinity, are treated as param-
eters that index superselection sectors. The Takesaki and Müller-Herold results

27 A similar result holds for chemical potential.
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came after the Haag and Kastler paper. Those results were used here to show that
even if one were to relegate classical observables (or, more generally, observables
at infinity) to the status of parameters, there would still be at least one global
observable that would serve to physically distinguish between unitarily inequiv-
alent representations of the quasi-local algebras. Such observables are elements
of the von Neumann algebra generated by representations of the quasi-local alge-
bra of observables: they are not elements of the quasi-local algebra. This means
that the policy of focusing solely on local and quasi-local observables and the
policy of invoking the concept of physical equivalence to deal with the unitar-
ily inequivalent representations of the local or quasi-local algebra have serious
limitations.

7. OBSERVABLES AT INFINITY

Aside from the earlier considerations, there are other reasons for regarding
Haag and Kastler’s position on observables at infinity as very dubious. It is certainly
not clear that the observables at infinity are unmeasurable in principle. Indeed, it
certainly seems that it is possible to measure temperature and chemical potential.
Although these quantities arise in the context of quasi-local algebraic quantum
statistical mechanics, it is reasonable to suppose that such quantities will have
counterparts in thermal quantum field theory. So, it is worth indicating how such
observables may be treated in a unified manner along with the local, quasi-local,
and global observables.

Let A be a C∗-algebra of quasi-local observables in S.28 Let O be an open
bounded region of S and O⊥ the region of S that is (causally) disjoint from O. The
C∗-algebra of observables in O⊥ is A(O⊥) ⊂ A. If π is a representation of A,
the von Neumann algebra in O⊥ that is generated by π is Bπ (O) ≡ π (A(O⊥))′′,
the algebra of observables associated with O⊥. The algebra of observables at
infinity is then defined as Bπ ≡ ⋂

O∈S Bπ (O). Bπ is often characterized as a
subset of the center of π (A)′′. It is worth explaining the significance of this
claim. The center of π (A)′′ is usually denoted as Zπ (A) and (as mentioned ear-
lier) it is defined as follows: Zπ (A) ≡ π (A)′ ∩ π (A)′′. It is well known that if
π is a representation of A, then Bπ ⊂ Zπ (A).29 Elements of Bπ are not ele-
ments of π (A), but they are elements of πu(A)′′; so, they are global observables.
Presumably, classical observables are interpreted as elements of Bπ , since the
latter commute with each other as well as with all other observables of the sys-
tem. Mutual commutativity is a characteristic feature of the elements of the set

28S = E for algebraic quantum statistical mechanics. Usually, S = M for algebraic quantum field
theory, though sometimes S = E is used instead.

29 See Proposition 2.1 and the associated proof on page 196 of Lanford and Ruelle (1969).



1254 Kronz and Lupher

of classical observables; though, it should be added that there is no reason to
think that all the elements of Bπ correspond to some classical observable or
other.30

As noted earlier, a factor is by definition a von Neumann algebra with a
trivial center, meaning that the elements of its center are just scalar multiples
of the identity element. KMS states, equilibrium states corresponding to definite
temperature values, are factor representations. This means that the temperature
observable in a factor representation is merely a multiple of the identity; that is
to say, it is merely a parameter value. This suggests that a larger representation
is necessary to represent classical observables such as temperature as nontrivial
elements of the algebra of observables that are associated with the system. One
representation that may serve this purpose is the universal representation πu of
the algebra A of quasi-local observables. By definition it is the direct sum of
all GNS representations over all states—i.e., it is defined as πu ≡ ⊕

ρ∈A∗+ πρ .
Its associated concrete C∗-algebra is πu(A), where πu(A) ≡ ⊕

ρ∈A∗+ πρ(A), and
it is defined on the direct sum of Hilbert spaces Hπu ≡ ⊕

ρ∈A∗+ Hπρ
. Classical

observables may be interpreted as nontrivial global elements of πu(A)′′, the uni-
versal enveloping von Neumann algebra of πu(A), as suggested in Müller-Herold
(1980).31 Müller-Herold also suggests that a properly chosen subalgebra of πu(A)′′

may be more appropriate, thereby hinting that πu(A)′′ may perhaps be too large.
For systems having a finite inverse temperature 0 < β < +∞, one could take the
representation corresponding to a direct integral of (type III) factor representa-
tions each associated with a different temperature value. The temperature observ-
able is then a global element of the bidual of the algebra corresponding to this
representation.32

8. CONCLUSION

One could try to defend the philosophy of local quantum physics (that
all the physically relevant features of a system are contained in the

30 Sometimes a classical observable of a system is characterized as an observable for which the
system has a precise value at all times. Surely this characterization is too restrictive a notion for
the macroscopic observables that are characterized in classical statistical mechanics. A system has
a definite temperature if and only if it is in an equilibrium state, and certainly there are states that
are far from and others that are near to equilibrium.

31 From what is given earlier in Section 2, it follows that πu(A)− = πu(A)′′ ∼= A∗∗, where πu(A)−
is the closure πu(A) in the weak operator topology, A∗∗ (a W ∗-algebra) is the bidual of A, and the
relation “α ∼= β” means that α isometrically isomorphic to β.

32 Positive developments along these lines have already been put forward in Amann and Müller-Herold
(1986) and in Amann (1987).
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quasi-local C∗-algebra of observables) by arguing that all that is really ever
measured are local or quasi-local approximations to these global “idealized”
quantities.33 This is a worthy suggestion, and this matter is briefly addressed
here.

The observables in question are the global observables. Global observables
are the elements of the universal enveloping von Neumann algebra πu(A)′′

generated by a representation π of a C∗-algebra A that do not correspond
to elements of π (A). Among these are the observables at infinity, which in-
clude the classical observables. Mathematically, these observables arise due to
a change in topology. The quasi-local algebra is closed in the norm topology,
the associated enveloping von Neumann algebra is closed in the weak opera-
tor topology, and many sequences of observables that do not converge in the
norm topology do so in the weak operator topology. For any of the global ob-
servables in question, it is not possible to find a sequences of observables in
the quasi-local algebra that approximate it in the norm topology as closely as
one would like (for any epsilon). Of course, the philosophy of local quantum
physics only requires that the approximation be as close as one would like for
all practical purposes. Suppose for the sake of argument that one can spec-
ify a lower limit on approximation for experimental purposes. There is still
the question as to whether the global observables in question that are actually
measurable can be so approximated once the lower limit is set. There is no a
priori reason for thinking that this is so. The only way that the defense can
be carried out is on a case-by-case basis. One case of special interest is the
temperature observable. Perhaps the proponents of this philosophy can specify
the element of the quasi-local algebra that suitably approximates this observ-
able. Temperature measurements are made, but one must know that the system
is in an equilibrium state to say that the value obtained in a local measure-
ment corresponds to the temperature of the system. That is to say, a global
determination must be made before the local measurement has the appropriate
significance.

Rather than defend the philosophy of local quantum physics, we propose
two alternative approaches: the first involves understanding what it means from a
physical point of view (both epistemic and ontic) to adopt a change in topology.34

The second is to build directly a non-local C∗-algebra of observables. These
approaches give rise to issues that are certainly worth addressing in more detail,
but this must be done elsewhere.

33 Rob Clifton suggested this possibility to us.
34 For more on the point of view advocated here, see Primas (1998) and Atmanspacher and Kronz

(1999).
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INDEX OF NOTATION

E Euclidean space
M Minkowski spacetime
O an open bounded region of some global framework S (typically E or M)

• E is used in quasi-local algebraic quantum statistical mechanics
• M is usually used in algebraic quantum field theory; sometimes
E is used

A a C∗-algebra of observables
A(O) a C∗-algebra of observables that is associated with a region O of S
Aloc a C∗-algebra of quasi-local observables that is associated with S

• Aloc ≡ ⋃

O∈S
A(O), the bar denotes closure with respect to the

norm topology
• the “loc” subscript is suppressed in the text when there is no risk

of confusion
A∗ the dual of A—it is the complete set of continuous linear functionals

on A
A∗+ the state space of A—it is the complete set of positive unit-norm

elements of A∗

A∗∗ the bidual (the dual of the dual) of A; i.e., A∗∗ ≡ (A∗)∗

H a Hilbert space
B(H) the set of bounded operators on H
π a representation of A in Hπ , the Hilbert space associated with π

• π is a mapping of A into B(Hπ ) that faithfully preserves the
algebraic relations between elements of A (including the ∗ operation)

Hπ the Hilbert space associated with the representation π

Fπ the folium associated with the representation π , which is the set of
π -normal states in A∗+; a state is π -normal iff it can be represented
as a density operator in Hπ

π (A) a concrete C∗-algebra generated by a representation π of a C∗-algebra A
π (A)′ the commutant of π (A)
π (A)′′ the bicommutant of π (A), which is the von Neumann algebra generated

by π

Zπ (A) the center of π (A)′′, where (by definition) Zπ (A) ≡ π (A)′
⋂

π (A)′′

πu the universal representation of A, where πu ≡ ⊕

ρ∈A∗+
πρ

Hπu the Hilbert space associated with πu, where Hπu ≡ ⊕

ρ∈A∗+
Hπρ

πu(A) the C∗-algebra that corresponds to the universal representation of A,
where πu(A) ≡ ⊕

ρ∈A∗+
πρ(A)

πu(A)′′ the universal enveloping von Neumann algebra of πu(A)
• πu(A)′′ is isometrically isomorphic with A∗∗
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